

Attempt any one out of two: (c)

two vetices.

Prove that in a binary tree with n vertices has $\frac{n+1}{2}$ pendent vertices.

there are at least two pendent vertices.

then prove that there must be a path joining these

In any tree (with 2 or more vertices), prove that

- (ii) Prove that the number of odd vertices in a graph are always even.
- (d) Attempt any one out of two:
 - If a graph G with n vertices is a tree, then prove that it has n-1 edges. Discuss its converse with argument.
 - (ii) Prove that a given connected graph G is Euler if and only if all the vertices of G are of even degree.

4

2

3

5

2	(a)	Answer the following questions in short:	4
		(i) Write adjacency matrix of complete graph with 5 vertices.	
		(ii) The chromatics number of binary tree with 11 vertices and of 5 level is	
		(iii) Define : acyclic graph.	
		(iv) Define : properly colored graph.	
	(b)	Attempt any one out of two:	2
	` /	(i) In a standard notation fill in the blanks.	
		$n^* = $, $f^* = $, $r^* = $	
		$\mu^* = $	
		(ii) Prove that the reduced incidence matrix of a tree is non singular.	
	(c)	Attempt any one out of two:	3
		(i) Prove that the ring sum of two circuits in a graph G is either a circuit or an edge-disjoint union of circuits.	
		(ii) Show that every circuit has an even number of edges in common with any cut-set.	
	(d)	Attempt any one out of two:	5
		(i) With respect to a spanning tree T , prove that a branch b_i that determines a fundamental cut-set S is contained in every fundamental circuit associated with the chords in S , and no other.	
		(ii) Show that a connected planar graph with n vertices and e edges has $e-n+2$ regions.	
3	(a)	Answer the following questions in short:	4
	` '	(i) The point that coincides with the transformation is called	
		(ii) Define: mobius mapping.	
		(iii) Define : conformal mapping.	
		(iv) Define: bilinear map.	
	(b)	Attempt any one out of two:	2
		(i) Find the fixed point of $w = \frac{z-1}{z+1}$.	
		(ii) Show that $x + y = 2$ transform into the parabola	

 $u^2 = 8(v-2)$ under the transformation $w = z^2$.

(c) Attempt any one out of two:

- 3
- (i) Find bilinear transformation that maps -1, 0 and 1 into -i, 1 and i respectively.
- (ii) Obtain a transformation of sector $r \le 1, 0 \le \theta \le \frac{\pi}{4}$ under the map $w = z^2$.
- (d) Attempt any one out of two:

5

- (i) Prove that the transformation $(w+1)^2 = \frac{4}{z}$ transform the unit circle of w-plane into parabola of z-plane.
- (ii) Show that the composition of two bilinear transformations is again a bilinear transformation.
- 4 (a) Answer the following questions in short:

4

(i) Find the radius of convergence for the series

$$\sum_{n=0}^{\infty} \frac{z^n}{n!}.$$

- (ii) Define: Partial sum sequence for a complex series.
- (iii) Write Maclaurian series expansion of sin z.
- (iv) State Laurent's theorem.
- (b) Attempt any **one** out of two:

 $\mathbf{2}$

- (i) Find the limit of $\left\{z_n\right\}_{n=1}^{\infty}$, where $z_n = \frac{1}{n^3} + i$.
- (ii) If a series of complex numbers converges, then show that the n^{th} term converges to zero as n tends to infinity.
- (c) Attempt any one out of two:

3

- (i) Explain $\frac{z}{(z-2)(z-3)}$ in Laurent's series for 0 < |z-2| < 1.
- (ii) Show that $z \cosh z^2 = \sum_{n=0}^{\infty} \frac{z^{4n+1}}{(2n!)}$.

(d) Attempt any one out of two:

5

- (i) State and prove Taylor's theorem.
- (ii) Expand $f(z) = \frac{1}{z^2 \sinh z}$ in Laurent's series for

 $z_0 = 0$ and hence deduce that $\int_C \frac{1}{\sinh z} dz = 2\pi i$ and

$$\int_{C} \frac{1}{z^2 \sinh z} dz = -\frac{\pi}{3}i.$$

- 5 (a) Answer the following questions in short:
 - (i) $\operatorname{Res}\left(\frac{\cos z}{z}, 0\right) = \underline{\hspace{1cm}}$
 - (ii) Define: Simple pole.
 - (iii) Define: Residue.
 - (iv) Define: Isolated singular point.
 - (b) Attempt any one out of two:

2

- (i) Find the pole of $f(z) = \frac{e^{iz}(z+2)}{z^3 2z^2 5z + 6}$.
- (ii) Find the residue of $f(z) = \frac{e^{3z}}{z(z-1)}$ at $z_0 = 0$.
- (c) Attempt any one out of two:

3

(i) If z_0 is the pole of order m for a complex valued

function f(z), then show that $\operatorname{Res}(f(z), z_0) = \frac{\phi^{m-1}(z_0)}{(m-1)!}$,

where $\phi(z) = (z - z_0)^m f(z)$.

(ii) Using residue theorem prove that

 $\int_{-\infty}^{\infty} \frac{1}{\left(1+x^2\right)^3} dx = \frac{3\pi}{8}.$

(d) Attempt any ${\bf one}$ out of two :

5

- (i) Evaluate $\int_{|z|=3} \frac{e^{tz}}{z^2(z^2+2z+2)} dz.$
- (ii) State and prove Cauchy-Residue theorem.